Problem 2: Interference from thermally deformed surface (thermos-deformation)

Part A [0.8 points]

The resulting pattern exhibits reversibility and shrinkage up to a certain power value. The upper boundary value corresponding to the thermo-elastic range which is known as yield strength should be determined.

A.1	Determine the power associated with this yield strength $\left(p_{\max }\right)$.	0.3 pt
	For $350-400 \mathrm{~mW} 0.3 \mathrm{pts}$	
	For 300-350 mW 0.2 pts	
For 400-450 mW 0.1 pts		

I, mA	$V, \mathrm{~V}$	P, mW	$P_{\text {avg }}, \mathrm{mW}$
97.3	3.74	363.90	363.6
98.3	3.75	368.63	
97.6	3.74	365.02	
96.5	3.73	359.95	
96.7	3.73	360.69	

A.2	Determine the diameter of the outermost bright fringe when the laser power is set to the level associated with the yield strength.	0.5 pt
	The outermost diameter determined by locating the screen farther from target as following: Determined the diameter value 0.3 pts Distance between the target and screen 0.2 pts	

$L=49.2 \mathrm{~cm}$	
$D_{\text {out }}, \mathrm{cm}$	$\left.<D_{\text {out }}\right\rangle$, cm
27.0	27.5
26.0	
28.0	
28.5	
28.0	

$L, \mathrm{~cm}$	49.2	45	40	35	30	25	20	15	10	5
$D, \mathrm{~cm}$	27.5	25.6	22.8	19.9	17.1	14.2	11.4	8.5	5.7	2.8

Experiment

mun $\stackrel{6}{\text { xxill }} \mathrm{Mm}$
APho
MONGOLIA 2023

Part B [3.5 points]

B. 1	The diameter of the outermost light fringe and the number of fringes formed in this test are measured in relation to the power and the results should be recorded in an Answer sheet table.	1.5pt
	- At least 10 measurement points 0.3 pts For 7-9 points 0.2 pts For 5-6 points 0.1 pts For 150-300 mW 0.3 pts For 100-150 mW 0.2 pts - Measured voltage for all rows in the table 0.2 pts For 7-9 points 0.1 pts - Measured current for all rows in the table 0.2 pts For 7-9 points 0.1 pts - Calculated power for all rows in the table 0.2 pts For 7-9 points 0.1 pts - Significant figure all same number 0.3 pts	

№	$I, \mathrm{~mA}$	$U, \mathrm{~V}$	$P, \mathrm{~mW}$	N
1	81.9	3.62	296.5	4
2	83.3	3.62	301.5	5
3	84.2	3.63	305.6	9
4	84.3	3.63	306.0	10
5	84.9	3.64	309.0	11
6	85.3	3.64	310.5	12
7	86.5	3.65	315.7	13
8	87.6	3.66	320.6	15
9	88.3	3.67	324.1	16
10	89.0	3.67	326.6	19
11	92.1	3.70	340.8	20
12	94.3	3.72	350.8	21

B.2	Construct a graph depicting the relationship between the diameter of the outermost light interference fringe on the screen and the corresponding power level.	1.0pt
	At least 10 measured points appear in the graph 0.4 pts The data covers at least 75% of each coordinate length 0.4 pts There are labels in each axis 0.2 pts	

Experiment

mun $\stackrel{6}{\text { xxill }} \mathrm{Mm}$
APho
MONGOLIA 2023

B.3	Plot the number of interference fringes on the screen is measured as a function of power.	1.0pt
	At least 10 measured points appear in the graph 0.4 pts The data covers at least 75% of each coordinate length 0.4 pts There are labels in each axis 0.2 pts	

Experiment

mun $\stackrel{6}{\text { xxill }}$ Mum
APho
MONGOLIA 2023

Part C [3.7 points]

C.1	Measure the angular width (an angle between the ray of nth order fringe and the ray of $n+1$ th order fringe) and visible angle (an angle between the ray of nth order fringe and x-axis) of the dark fringe at a constant power level, depending on the number of the fringe, and record the results in Answer Sheet Table.	1.2 pt
	At least 10 measurement points 0.4 pts For $7-9$ points 0.2 pts For 5-6 points 0.1 pt The power determined 0.1 pts The visible angle values determined 0.2 pts The angular width values determined 0.3 pts Significant figure all same number 0.2 pts	

m	R, cm	$L, \mathrm{~cm}$	$\tan \left(\alpha_{m}\right)$	$\alpha_{m},^{\circ}$	α_{m}, mrad	$\Delta \alpha_{m},{ }^{\circ}$	$\Delta \alpha_{m}, \mathrm{mrad}$
1	1.0	49.2	0.020	1.16	20.3	0.35	6.1
2	1.3		0.026	1.51	26.4	0.23	4.0
3	1.5		0.030	1.75	30.6	0.35	6.1
4	1.8		0.037	2.10	36.7	0.35	6.1
5	2.1		0.043	2.44	42.6	0.23	4.0
6	2.3		0.047	2.68	46.8	0.35	6.1
7	2.6		0.053	3.03	52.9	0.46	8.0
8	3.0		0.061	3.49	60.9	0.23	4.0
9	3.2		0.065	3.72	65.0	0.46	8.0
10	3.6		0.073	4.18	73.0	0.46	8.0
11	4.0		0.081	4.65	81.2	1.04	18.2
12	4.5		0.100	5.69	99.3	1.04	18.2
13	5.0		0.118	6.72	117.3		

C.2. Plot a linear graph of the relationship between the visible angle vs order of fringe.

C.2	Plot a linear graph of the relationship between the visible angle vs order of fringe.	1.0pt
	At least 10 measured points appear in the graph 0.4 pts The data covers at least 75% of each coordinate length 0.4 pts There are labels in each axis 0.2 pts	

1. Non-linear graph (0.2pts)

Experiment

mun $\stackrel{6}{\text { xxill }} \mathrm{Mm}$
APhO
MONGOLIA 2023

2. Linearized graph (0.8pts)

C.3	Find the slope and Y-intercept of the graph plotted in Task C.2.	0.5 pt
	Plotted regression line and calculate slope 0.3 pts Value of grad 0.2 pts	

$$
m^{\prime}=167.82 \cdot \sin \alpha_{m}-2.1722
$$

Experiment

mun $\stackrel{6}{\text { xxill }} \mathrm{Mm}$
APho
MONGOLIA 2023

C.4	Construct a graph of angular width as a function of the order of fringes.	1.0 pt
	At least 10 measured points appear in the graph 0.2 pts	
	The data covers at least 75% of each coordinate length 0.2 pts There are labels in each axis 0.2 pts Value of grad 0.2 pts	

Part D [2.0 points]

D.1	By counting the number of the fringes determine the highest order of the fringes. Determine the height of the thermal deformation in terms of the laser wavelength as a function of the laser power. Plot a graph of your data. Hint: ensure your data includes the range of 200 mW to 400 mW.	1.4 pt
	Each data point $0.1 \mathrm{pt}(10$ datas) At least 8 measured points appear in the graph 0.2 pts There are labels in each axis 0.2 pts	

№	$m_{\max }$	$P, \mathrm{~mW}$	h, λ
1	4	296.5	2.0
2	5	301.5	2.5
3	9	305.6	4.5
4	10	306.0	5.0

Experiment

mun $\stackrel{6}{\text { xxill }} \mathrm{Mm}$
APho
MONGOLIA 2023

5	11	309.0	5.5
6	12	310.5	6.0
7	13	315.7	6.5
8	15	320.6	7.5
9	16	324.1	8.0
10	19	326.6	9.5
11	20	340.8	10.0
12	21	350.8	10.5

	What are the thermal deformation heights for the following input laser powers? Give your answers in units of the number of laser wavelengths.				
	$\bullet 200 \mathrm{~mW}$				
$\bullet 300 \mathrm{~mW}$					
$\bullet 400 \mathrm{~mW}$			\quad		
:---	:---				
	For 200 mW 0.2 pts				
	For 300 mW 0.2 pts				
For 400 mW 0.2 pts					

$P, \mathrm{~mW}$	h, λ
200	-12.6
300	3.6
400	19.8

Experiment

mW
APhO
MONGOLIA 2023

Maximum optical path difference of rays is 2 h for central maximum.
For $\mathrm{m}^{\text {th }}$ fringe which is observed by visible angle α_{m}, the optical path difference for the rays from the top and bottom of a bump is:

$$
\begin{gathered}
\Delta s_{m} \approx 2 h-O A=n \lambda-R \sin \alpha_{m}=n \lambda-m \lambda \\
R \sin \alpha_{m}=m \lambda \Rightarrow R=\frac{m \lambda}{\sin \alpha_{m}}
\end{gathered}
$$

Data obtained in Part C. 1 were used.

m^{\prime}	$R, \mathrm{~cm}$	$L, \mathrm{~cm}$	$\tan \alpha_{m}$	$\sin \alpha_{m}$
1	1.0	49.2	0.0203	0.0203
2	1.3		0.0264	0.0264
3	1.5		0.0305	0.0305
4	1.8		0.0366	0.0366
5	2.1		0.0427	0.0426
6	2.3		0.0467	0.0467
7	2.6		0.0528	0.0528
8	3.0		0.0610	0.0609
9	3.2		0.0650	0.0649
10	3.6		0.0732	0.0730
11	4.0		0.0813	0.0810
12	4.5		0.0915	0.0911
13	5.0		0.1016	0.1011

Here, m^{\prime} and m are observed and real number of fringes, respectively.

Experiment

mu ${ }_{\text {xxili }}^{6} \mathrm{Mm}$
APho
MONGOLIA 2023

$$
m^{\prime}=167.82 \cdot \sin \alpha_{m}-2.1722
$$

From the above equation, it shows that difference between m^{\prime} and m is $2.1722 \approx 2$ which is the number of fringes hidden in the central circle. From our data, $m=m^{\prime}+2=15$.

From the experiment, height of the bump is calculated to be 7.5λ and the base radius is $R_{\text {base }} \approx$ 167.82 λ.

